This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274

Coordination Polymers. 9. Chelate Polymers Derived from Bisphenolic Complexes and Propylenediamine
Mihaela Spiratos ${ }^{\text {a }}$; Anton Airineia; Gheorghe Ioan Rusu ${ }^{\text {a }}$
a "P. Poni" Institute of Macromolecular Chemistry Aleea Grigore, Iasi, Romania

To cite this Article Spiratos, Mihaela , Airinei, Anton and Rusu, Gheorghe Ioan(1989) 'Coordination Polymers. 9. Chelate Polymers Derived from Bisphenolic Complexes and Propylenediamine', Journal of Macromolecular Science, Part A, 26: 10, 1415 - 1423
To link to this Article: DOI: 10.1080/00222338908052059
URL: http://dx.doi.org/10.1080/00222338908052059

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


COORDINATION POLYMERS. 9. CHELATE POLYMERS DERIVED FROM BISPHENOLIC COMPLEXES AND PROPYLENEDIAMINE

MIHAELA SPIRATOS, ANTON AIRINEI,* and GHEORGHE IOAN RUSU
"P. Poni" Institute of Macromolecular Chemistry Aleea Grigore Ghica Voda, 41 A, R-6600, Iasi, Romania

Abstract

Chelate polymers derived from bis(2,4-dihydroxybenzaldehyde)propylenediimine M and bis(2,4-dihydroxyacetophenone)propylenediimine M $\left(\mathrm{M}=\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}\right)$ with aromatic acid chlorides were prepared by interfacial polycondensation. Also, chelate polysiloxanes were obtained from the same monomers and α, ω-dichloropolydimethylsiloxane. The spectral, thermal, magnetic, and electrical properties of the polychelates were studied.

INTRODUCTION

Coordination polymers having one-dimensional metal atom chain are of great interest as potential materials with high thermal resistance and semiconductor properties [1, 2].

This paper reports the preparation and characteristics of some new chelate polyesters and polysiloxanes based on bis(2,4-dihyhydroxybenzaldehyde)propylenediimine M and bis(2,4-dihydroxyacetophenone)propylenediimine $\mathrm{M}\left(\mathrm{M}=\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}\right)$.

EXPERIMENTAL

The polymers have the following general formula:

For the chelates $\mathrm{I}_{\mathrm{a}}-\mathrm{IX}, \mathrm{Y}=p-\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CO}-$, with 1) $\mathrm{R}=-\mathrm{H}$, and $\mathrm{M}=\mathrm{Fe}^{2+}$ (I), Co^{2+} (II), $\mathrm{Ni}^{2+}(\mathrm{III}), \mathrm{Cu}^{2+}$ (IV), $\mathrm{Zn}^{2+}(\mathrm{V})$; and with 2) $\mathrm{R}=-\mathrm{CH}_{3}$, and $\mathrm{M}=$ Fe^{2+} (VI), $\mathrm{Ni}^{2+}(\mathrm{VII}), \mathrm{Cu}^{2+}$ (VIII), Zn^{2+} (IX). For the polymers $\mathrm{III}_{\mathrm{b}}, \mathrm{IV}_{\mathrm{b}}$,

Synthesis

$\operatorname{Bis}\left(2,4\right.$-dihydroxybenzaldehyde)propylenediimine Fe^{2+} (I), Co^{2+} (II), Ni^{2+} (III), Cu^{2+} (IV), and $\mathrm{Zn}^{2+}(\mathrm{V})$ were obtained by literature methods [3].

Bis(2,4-dihydroxyacetophenone)propylenediimine $\mathrm{Fe}^{2+}(\mathrm{VI}), \mathrm{Ni}^{2+}$ (VII), Cu^{2+} (VIII), and Zn^{2+} (IX) were prepated by an original method: First, bis(2,4-dihydroxyacetophenone)propylenediimine was prepared by heating an ethanolic solution of $0.1 \mathrm{~mol} 2,4$-dihydroxyacetophenone and 0.05 mol propylenediamine for 2 h on a water bath. Then the complexes were obtained by reaction between 1 mol bis(2,4-dihydroxyacetophenone)propylenediimine in ethanol and 1 mol iron sulfate, or nickel, copper, and zinc acetate in water, respectively, and refluxing several hours.
α, ω-Dichloropolydimethylsiloxane was synthesized as described elsewhere [4].

The chelate polyesters were obtained from the chelates (I-IX) and terephthaloyl chloride by interfacial polycondensation [5, 6].

The chelate polysiloxanes were prepared by polycondensation in a heterogeneous system $[7,8]$. First, the sodium salt of the chelate monomers was obtained by dissolving them in aqueous alkali and then precipitating with acetone. After that, 1 mol sodium salt in the form of a benzene suspension
was reacted with $1 \mathrm{~mol} \alpha, \omega$-dichloropolydimethylsiloxane with stirring at room temperature for 40 h . The synthesis of these polychelates is very difficult and requires numerous precautions because of the sensitivity to hydrolysis of α, ω-dichloropolydimethylsiloxane.

The polymers were purified by repeated extractions with methanol and ethanol.

Physicochemical measurements were made as described earlier [9, 10].

RESULTS AND DISCUSSION

All the polychelates listed in Table 1 are stable, colored, amorphous powders, insoluble in water and common organic solvents. The chelate polysiloxanes showed some solubility in dimethylformamide and dimethylsulfoxide. The results of the elemental analyses (Table 1) suggest a metal: ligand/stoichiometry of $1: 2$ in all polymers with two water molecules associated with the formula $\left(-\mathrm{ML} \cdot 2 \mathrm{H}_{2} \mathrm{O}-\right)_{n}$. The presence of water molecules is supported by thermogravimetric analysis and infrared absorption spectra. α, ω-Dichloropolydimethylsiloxane contains $8-9 \mathrm{Si}-\mathrm{O}$ units on the average. The polycondensation between bisphenolic complexes and siloxane derivative results in a dimer or trimer mixture containing only two $\mathrm{Si}-\mathrm{O}$ units. Increasing the polymerization time from 40 to 70 h and the temperature from 25 to $40.50^{\circ} \mathrm{C}$ does not achieve an increase in the siloxane chain length.

All the polymers are paramagnetic except the Zn^{2+} polymers, which are diamagnetic. The magnetic moments (μ_{eff}) of some of the polychelates are given in Table 1.

The values of the magnetic moment and the electronic reflection spectra indicate high-spin, slowly distorted octahedral configurations for the Fe^{2+} polychelates [11].

The Co^{2+} hexacoordinated bis(azooxo) polychelates exhibit distortions due to the Jahn-Teller effect, passing from an octahedral configuration to a square planar one. The greater the distortion, the higher is the magnetic moment of the spin-paired compounds [12].

Generally, the Ni^{2+} bis(azooxo) complexes with two water molecules coordinated in an axial arrangement have diamagnetic planar structures [13]. For our polychelates the intensity of the ligand field decreases because of the increase in the number of carbon atoms between the two nitrogen atoms. This causes the distortion of the planar configuration to a pseudotetrahedral one and thus the appearance of paramagnetism [14]. The lower magnetic
TABLE 1. Analytical Data and Physical Properties of Polychelates

Sample	MW of repeat unit, ${ }^{\text {a }} \mathrm{g} / \mathrm{mol}$	C	H		M	$\mu_{\text {eff }}, \mathrm{BM}$	Decomposition temperature, ${ }^{\circ} \mathrm{C}$
		Found (calculated), \%					
I	403.84	$\begin{gathered} 50.49 \\ (50.51) \end{gathered}$	$\begin{gathered} 4.53 \\ (4.95) \end{gathered}$	$\begin{gathered} 6.72 \\ (6.93) \end{gathered}$	$\begin{gathered} 13.07 \\ (13.82) \end{gathered}$	4.35	
I_{a}	533.84	$\begin{gathered} 55.01 \\ (56.19) \end{gathered}$	$\begin{gathered} 3.60 \\ (4.12) \end{gathered}$	$\begin{gathered} 4.95 \\ (5.24) \end{gathered}$	$\begin{gathered} 9.13 \\ (10.46) \end{gathered}$	4.45	195
II	406.93	$\begin{gathered} 49.97 \\ (50.13) \end{gathered}$	$\begin{gathered} 4.27 \\ (4.91) \end{gathered}$	$\begin{gathered} 6.59 \\ (6.88) \end{gathered}$	$\begin{gathered} 13.63 \\ (14.48) \end{gathered}$	2.19	
II_{a}	536.93	$\begin{gathered} 54.27 \\ (55.87) \end{gathered}$	$\begin{gathered} 3.35 \\ (4.09) \end{gathered}$	$\begin{gathered} 4.96 \\ (5.21) \end{gathered}$	$\begin{gathered} 9.58 \\ (10.97) \end{gathered}$	2.23	220
III	406.71	$\begin{gathered} 49.76 \\ (50.15) \end{gathered}$	$\begin{gathered} 4.45 \\ (4.91) \end{gathered}$	$\begin{gathered} 6.15 \\ (6.88) \end{gathered}$	$\begin{gathered} 13.20 \\ (14.43) \end{gathered}$		
$\mathrm{III}_{\mathrm{a}}$	536.71	$\begin{gathered} 54.46 \\ (55.89) \end{gathered}$	$\begin{gathered} 3.32 \\ (4.09) \end{gathered}$	$\begin{gathered} 4.63 \\ (5.21) \end{gathered}$	$\begin{gathered} 10.09 \\ (10.93) \end{gathered}$	2.18	235
$\mathrm{III}_{\mathrm{b}}$	536.71	$\begin{gathered} 47.23 \\ (46.95) \end{gathered}$	$\begin{gathered} 3.27 \\ (4.09) \end{gathered}$	$\begin{gathered} 4.73 \\ (5.21) \end{gathered}$	$\begin{gathered} 10.26 \\ (10.93) \end{gathered}$		
IV	411.54	$\begin{gathered} 48.93 \\ (49.56) \end{gathered}$	$\begin{gathered} 4.50 \\ (4.85) \end{gathered}$	$\begin{gathered} 6.25 \\ (6.80) \end{gathered}$	$\begin{gathered} 14.13 \\ (15.43) \end{gathered}$	1.83	

IV_{a}	541.54	54.35	3.27	4.72	12.50	2.22	250
		(55.39)	(4.06)	(5.17)	(11.73)		
IV_{b}	541.54	47.13	3.35	4.66	10.96		205
		(46.53)	(4.06)	(5.17)	(11.73)		
V	413.37	48.93	4.52	6.90	15.02	diamagnetic	
		(49.35)	(4.83)	(6.77)	(15.81)		
V_{a}	543.37	54.05	3.54	5.30	11.60	diamagnetic	230
		(55.21)	(4.04)	(5.15)	(12.03)		
VI	431.84	52.30	5.15	6.63	12.01	4.44	
		(52.79)	(5.55)	(6.48)	(12.93)		
VI_{a}	561.84	56.34	4.23	5.15	8.75	4.50	
		(57.66)	(4.62)	(4.98)	(9.93)		
VII	434.71	52.11	5.01	5.87	12.74	2.57	
		(52.74)	(5.52)	(6.44)	(13.50)		230
$\mathrm{VII}_{\mathrm{a}}$	564.71	56.63	4.23	4.12	10.76	2.77	
		(57.37)	(4.60)	(4.95)	(10.39)		210
$\mathrm{VII}_{\mathrm{b}}$	564.71	47.63	4.21	4.72	11.26		
		(48.87)	(4.60)	(4.95)	(10.39)		

TABLE 1 (continued)

Sample	MW of repeat unit, ${ }^{\text {a }} \mathrm{g} / \mathrm{mol}$	C	H		M	$\mu_{\text {eff }}, \mathrm{BM}$	Decomposition temperature, ${ }^{\circ} \mathrm{C}$
		Found (calculated), \%					
VIII	439.54	$\begin{gathered} 51.32 \\ (51.87) \end{gathered}$	$\begin{gathered} 5.17 \\ (5.46) \end{gathered}$	$\begin{gathered} 5.96 \\ (6.37) \end{gathered}$	$\begin{gathered} 15.28 \\ (14.45) \end{gathered}$		
VIII ${ }_{\text {a }}$	569.54	$\begin{gathered} 55.76 \\ (56.88) \end{gathered}$	$\begin{gathered} 4.23 \\ (4.56) \end{gathered}$	$\begin{gathered} 4.26 \\ (4.91) \end{gathered}$	$\begin{gathered} 11.94 \\ (11.15) \end{gathered}$	1.83	200
$\mathrm{VIII}_{\mathrm{b}}$	569.54	$\begin{gathered} 48.53 \\ (48.46) \end{gathered}$	$\begin{gathered} 4.39 \\ (4.56) \end{gathered}$	$\begin{gathered} 4.26 \\ (4.91) \end{gathered}$	$\begin{gathered} 11.93 \\ (11.15) \end{gathered}$		210
IX	441.37	$\begin{gathered} 51.20 \\ (51.65) \end{gathered}$	$\begin{gathered} 5.12 \\ (5.43) \end{gathered}$	$\begin{gathered} 6.73 \\ (6.34) \end{gathered}$	$\begin{gathered} 13.95 \\ (14.81) \end{gathered}$	diamagnetic	
IX_{a}	571.37	$\begin{gathered} 55.27 \\ (56.70) \end{gathered}$	$\begin{gathered} 4.05 \\ (4.55) \end{gathered}$	$\begin{gathered} 5.17 \\ (4.90) \end{gathered}$	$\begin{gathered} 10.11 \\ (11.44) \end{gathered}$	diamagnetic	

${ }^{\text {a }}$ Molecular weights of repeat unit estimated from elemental analysis.
moments (Table 1) and the absorption bands at 380,600 , and 720 nm support the simultaneous presence of both configurations.

The presence of six ligands suggests octahedral structures for the Cu^{2+} polychelates, but the electronic reflection spectra show a square planar environment around the metal ion, supported by the broad absorption band at about 590 nm .

The infrared absorption spectra of the chelate polymers resemble each other in general shape. The broad absorption band observed in the 3500-3300 cm^{-1} region, with a maximum around $3420 \mathrm{~cm}^{-1}$, is attributed to 0 OH -stretching vibrations of coordinated water molecules [15]. The presence of water molecules is also supported by the thermogravimetric data. The strong IR absorption band at $1720 \mathrm{~cm}^{-1}$ is assigned to $\mathrm{C}=\mathrm{O}$ stretching as a result of the esterification reaction between the OH phenolic groups and the diacid chloride. There is also a strong absorption band at about $1600 \mathrm{~cm}^{-1}$ due to the $\mathrm{C}=\mathrm{N}$ stretching. The chelate polysiloxanes show an absorption band in the $1000-1100 \mathrm{~cm}^{-1}$ region due to asymmetric $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ stretching [16].

The polymers start to decompose at $200-250^{\circ} \mathrm{C}$ (Table 1). The order of their thermal stabilities was found to be $\mathrm{Cu}>\mathrm{Ni}>\mathrm{Zn}>\mathrm{Co}>\mathrm{Fe}$, which is comparable to the reported order [2,17]. The experimental weight loss due to water in the polymers corresponds to the amount calculated for dihydrates. The abrupt change in weight shows decomposition of the ligand. Among the polymers obtained, Cu^{2+} polychelate is the most stable.

The electrical measurements were carried out over a range of temperatures (Table 2). It was found that the negative logarithm of conductivity of the polychelates is a linear function of the reciprocal temperature in this range. The activation energy $\left(E_{a}\right)$ and the specific conductivity $\left(\sigma_{0}\right)$ were calculated by the expression $\sigma=\sigma_{0} \exp \left(-E_{a} / 2 k T\right)$, where σ is the electrical conductivity at $T \mathrm{~K}, \sigma_{0}$ is a constant, and k is the Boltzmann constant. These values and the room-temperature electrical conductivity are summarized in Table 2. The activation energy decreases in the order $\mathrm{Ni}>\mathrm{Cu}>\mathrm{Co}>\mathrm{Zn}$ for the polyesters derived from bis(2,4-dihydroxybenzaldehyde)propylenediimine, which is in partial agreement with the order observed previously [18].

CONCLUSIONS

Coordination polymers have been obtained from bisphenolic complexes and terephthaloyl chloride by interfacial polycondensation. Chelate poly-

TABLE 2. Electrical Data of Some Polychelates

Sample	$\Delta T, \mathrm{~K}$	E_{a}, eV	$\sigma_{298 \mathrm{~K}}, \Omega^{-1} \mathrm{~cm}^{-1}$	$\sigma_{0}, \Omega^{-1} \mathrm{~cm}^{-1}$
II_{a}	$298-425$	1.35	7.15×10^{-10}	2.80×10^{1}
$\mathrm{III}_{\mathrm{a}}$	$300-450$	1.60	1.20×10^{-10}	3.24×10^{4}
$\mathrm{III}_{\mathrm{b}}$	$300-475$	1.35	7.20×10^{-9}	1.51×10^{3}
IV	a	$300-490$	1.45	6.85×10^{-9}
$\mathrm{~V}_{\mathrm{a}}$	$300-420$	1.25	8.33×10^{-10}	1.05×10^{4}
VI	$300-430$	1.70	7.51×10^{-11}	3.10×10^{1}
$\mathrm{VII}_{\mathrm{a}}$	$300-470$	1.40	6.52×10^{-9}	1.76×10^{4}
$\mathrm{VIII}_{\mathrm{a}}$	$300-440$	1.45	2.35×10^{-11}	3.64×10^{3}
$\mathrm{VIII}_{\mathrm{b}}$	$300-480$	1.20	2.40×10^{-8}	4.20×10^{1}

siloxanes have been synthesized from the same monomers and α, ω-dichloropolydimethylsiloxane by polycondensation in heterogeneous systems.

The configurations of the chelate ring (stereochemistry) of these polychelates have been derived by using elemental analysis, electronic and infrared spectral data, and magnetic measurements.

The decomposition temperature of the polychelates is in the order $\mathrm{Cu}>$ $\mathrm{Ni}>\mathrm{Zn}>\mathrm{Co}>\mathrm{Fe}$, while the thermal activation energy of the electrical conduction follow the order $\mathrm{Ni}>\mathrm{Cu}>\mathrm{Co}>\mathrm{Zn}$.

REFERENCES

[1] D. Woehrle, Adv. Polym. Sci., 50, 43 (1983).
[2] A. K. Dey, J. Indian Chem. Soc., 53, 357 (1986).
[3] P. Pfeiffer, Th. Hesse, H. Pfitzner, W. Scholl, and H. Thielert, J. Prakt. Chem., 149, 217 (1937).
[4] I. Luca and M. Spiratos, Romanian Patent 67,002 (1980).
[5] W. M. Eareckson, J. Polym. Sci., 40, 399 (1959).
[6] L. V. Interrante and J. C. Bailar Jr.; Inorg. Chem., 3, 1339 (1964).
[7] M. Marcu and M. Spiratos, Romanian Patent 66,034 (1978).
[8] M. Spiratos, A. Airinei, and N. Voiculescu, Angew. Makromol. Chem., 138, 159 (1986).
[9] M. Spiratos, G. I. Rusu, A. Airinei, and A. Ciobanu, Ibid., 107, 33 (1982).
[10] M. Spiratos, A. Airinei, G. I. Rusu, and A. Ciobanu, Polym. Bull., 6, 243 (1982).
[11] J. K. L. F. de Vries, J. M. Trooster, and E. de Boer, J. Chem. Soc., Dalton Trans., p. 1771 (1974).
[12] Y. Nishida and S. Kida, Bull. Chem. Soc. Jpn., 45, 461 (1972).
[13] R. S. Drago, Physical Methods in Chemistry, Mir, Moskow, 1981.
[14] S. J. Gruber, C. M. Harris, and F. Sinn, J. Inorg. Nucl. Chem., 30, 1805 (1968).
[15] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Mir, Moskow, 1966.
[16] A. L. Smith, Spectrochim. Acta, 16, 87 (1960).
[17] M. N. Patel and S. H. Patil, J. Macromol. Sci.-Chem., A17, 675 (1982).
[18] M. M. Patel and R. Manalavan, Ibid., A19, 951 (1983).

Received June 24, 1988
Revision received October 7, 1988

